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ABSTRACT 
In this paper, with the aim of developing a nondestructive evaluation technique using piezoelectric signals in 

wooden materials, we theoretically study the electroelastic field in a semi-infinite body with D∞ symmetry 

subjected to surface friction parallel to the ∞-fold rotation axis. By applying the analytical technique previously 

proposed by us, we formulate expressions for electroelastic field quantities, including electric potential, electric 

field, electric displacement, elastic displacement, strain, and stress by using two “elastic displacement potential 

functions” and two “piezoelastic displacement potential functions.” These potential functions and, consequently, 

the electroelastic field quantities are formulated using Fourier transforms in order to satisfy electroelastic 

boundary conditions. We carried out numerical calculations to correctly evaluate field quantities inside the body 

and at its surface. As a result, we were successful in quantitatively elucidating the surface electric displacement 

in response to the elastic stimulus of surface friction and suggested the possibility of a nondestructive evaluation 

technique using piezoelectric signals. 
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I. Introduction 
Because of rising demands to reduce the global 

carbon footprint, wooden materials have attracted 

considerable attention in engineering production as 

“carbon-neutral” materials. To ensure wooden 

materials of satisfactory quality, nondestructive 

evaluation techniques need to be developed. The 

electroelastic behaviors of wood, which is known as 

a piezoelectric material [1], have been investigated 

using piezoelectric effects. Piezoelectric signals 

were related to the profiles of defects [2-4], 

deformation [5, 6], and the stress–strain relation [7, 

8]. 

     Because wooden materials contain complicated 

microstructures, their detailed electroelastic behavior 

needs to be investigated from a microscopic 

standpoint. Such an approach, however, entails a 

considerably high computational cost and is 

impractical for engineering applications. Therefore, 

a macroscopic approach is required. From a 

macroscopic viewpoint, woods are generally 

recognized as orthotropic materials with their 

principal axes in the longitudinal, radial, and 

tangential directions [9, 10]. 

     Furthermore, according to another approach, 

woods are considered to have D  symmetry [5-8]. 

This is the consequence of an aggregation of natural 

cellulose chains in a certain manner [1, 8]. D  

symmetry is characterized by an “  -fold rotation 

axis” and a “two-fold rotation axis” perpendicular to  

 

it [11]. In other words, the material is isotropic 

within the plane perpendicular to the longitudinal 

direction. One of the most striking characteristics of 

a body with D  symmetry is the coupling between 

the shear strain (or shear stress) in the plane parallel 

to the  -fold rotation axis and the electric field (or 

electric displacement) perpendicular to the plane. 

     Considering the importance of electroelastic 

problems in wooden materials, we developed an 

analytical technique to obtaining general solutions to 

coupled electroelastic problems in bodies with D  

symmetry, and presented new possibilities in the 

theoretical investigation of the electroelastic 

behavior of wooden materials [12]. In that study, by 

way of a trial application of the technique, we 

treated a semi-infinite body and investigated the 

response of “elastic quantities,” such as stress and 

strain, resulting from “electric stimulus” by an 

electric potential on its surface. In order to develop 

nondestructive evaluation techniques, however, the 

response of electric quantities due to elastic stimuli 

need to be elucidated. 

     In this paper, therefore, we study the 

electroelastic field in a semi-infinite body subjected 

to surface friction parallel to the  -fold rotation 

axis in order to explore techniques of nondestructive 

evaluation. By applying the analytical technique 

previously proposed by us [12], electroelastic field 

quantities, including electric potential, electric field, 

electric displacement, elastic displacement, strain, 
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and stress, can be expressed by two “elastic 

displacement potential functions” and two 

“piezoelastic displacement potential functions.” 

These potential functions and, consequently, the 

electroelastic field quantities are formulated to 

satisfy electroelastic boundary conditions. Moreover, 

we performed numerical calculations to investigate 

the effects of the elastic stimulus modeled by the 

surface friction on the electric quantities. 

 

II. Theoretical analysis 
2.1  Problem 
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Fig. 1: Analytical model 

 

We consider a semi-infinite piezoelectric body 

 0x  with D  symmetry, as shown in Fig. 1, 

where the z -axis is parallel to the  -fold rotation 

axis of the body. The surface of the body is 

subjected to surface friction  zyf ,0 , which is anti-

symmetric and symmetric with respect to y  and z , 

respectively. The surface 0x  is chosen as the 

reference plane of electric potential. The 

displacements and electric potential are assumed to 

be zero at infinity. Our purpose in this section is to 

formulate the components of displacement, strain, 

stress, electric field, and electric displacement in the 

Cartesian coordinate system  zyx ,, , which are 

denoted as  zyx uuu ,, ,  xyzxyzzzyyxx  ,,,,, , 

 xyzxyzzzyyxx  ,,,,, ,  zyx EEE ,, , and 

 zyx DDD ,, , respectively and to formulate the 

electric potential  . 

 

2.2  Fundamental equations 

The fundamental equations for the problem stated in 

Subsection 2.1 are provided by the displacement-

strain relations 
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the relation between the electric potential and 

electric field 
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the constitutive equations 
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, (4) 

the equilibrium equations of stresses 
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and Gauss’s law 
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where ijc , kl , and kje  denote the elastic stiffness 

constant, dielectric constant, and piezoelectric 

constant, respectively [12]. The boundary conditions 

are then described as 
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2.3  Potential function method 

According to the analytical technique previously 

proposed by us [12], the electroelastic field 

quantities are described by elastic displacement 
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potential functions i , piezoelastic displacement 

potential functions i , certain constants ik   2,1i , 

and electric potential   as follows: 
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The components of stress and electric displacement 

are obtained by a simple algebraic operation, namely 

by substituting equations (9) and (10) into equations 

(3) and (4). For the sake of brevity, only the 

components closely related to the boundary 

conditions and electroelastic coupling are shown as 
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The governing equations for i , i , and   are 

given by 
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where 1  and 2  are the roots of a quadratic 

equation with respect to   
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2.4  Formulae for electroelastic field quantities 

As described in Subsection 2.1, the surface friction 

 zyf ,0  is anti-symmetric and symmetric with 

respect to y  and z , respectively, and so is the 

surface shear stress zx  obtained from equation (7). 

By referring to the fourth equation in equations (11), 

we find that i  is antisymmetric with respect to y  

and z , and that i  is symmetric and antisymmetric 

with respect to y  and z , respectively. By 

considering these symmetric and anti-symmetric 

properties and the finiteness of the electroelastic 

field described by the second equation in equation 

(7), and applying the Fourier transform [13] to 

equation (12), the solutions for i  and i   2,1i  

are obtained as 
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which in turn give 
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  ... (18) 

from the third equation in equation (12). 
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     By substituting equations (17) and (18) into 

equations (8)-(11), the electroelastic field quantities 

are obtained. For the sake of brevity, only the 

components of equation (11) are shown as 
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  ... (19) 

The distribution function for surface friction, 

 zyf , , is expressed in Fourier integral form [13] as 

        
 


0 0
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where 
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4
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

 . (21) 

By substituting equations (18)-(20) into equation (7), 

a set of simultaneous equations for   ,iA  and 

  ,iC   2,1i  is obtained as 
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The solution to this is obtained as 
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together with 
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  ... (24) 

By substituting equations (23) and (24) into equation 

(19), the electroelastic field quantities are 

formulated. Thus, our purpose in this section has 

been attained. Although for a simple model, these 

formulae are advantageous in that they enable us to 

evaluate field quantities without errors, and to 
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investigate quantities inside the body, namely 

experimentally-unmeasurable quantities. 

 

III. Numerical calculation 
3.1  Numerical specifications 

The distribution function for surface friction, 

 zyf , , is assumed to have a Rayleigh distribution 

with respect to y  and a Gaussian distribution with 

respect to z , with an effective width   as 
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for which equation (21) is calculated as 
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It should be noted that  zyf ,  in Fig. 1 is shown 

actually as defined by equation (25). 

     As an example of a piezoelectric body, we chose 

Sitka spruce (Picea sitchensis). Although a complete 

set of its material constants was not found in a 

common condition or in the form of equations (3) 

and (4), it was built in our past work [12] as 
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To show the numerical results, we introduced the 

following nondimensional quantities: 
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For brevity, we hereafter omit the signs for 

nondimensional quantities, ⌒. 

 

3.2  Distributions of field quantities 

Figure 2, which is expressed by equation (19), shows 

the distribution of stress zx  inside the body. From 

Fig. 2, we see that stress zx  is maximum at the 

surface 0x  and decreases monotonically toward 

zero with x  to satisfy the finiteness of the field 

described by equation (7). Figure 2 shows one of the 

most important aspects of this study: electroelastic 

field quantities inside the body, which are nearly 

impossible to obtain experimentally, are obtained. 
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Fig. 2: Distribution of stress zx  inside the body 

 0z  

 

     Figures 3 and 4 show the distributions of stress 

zx  and yz , respectively, on the surface 0x . It 

should be noted that the direction of the y -axis was 

taken as in the left part of Fig. 1. By referring to Fig. 

1, which shows the distribution of  zyf ,  as 

defined by equation (25), we found that the 

numerical results in Fig. 3 satisfied the boundary 

condition described by the first equation in equations 

(7), namely    zyf
xzx ,

0



 . From Fig. 4, we 

found that stress yz , for respective values of z , 

was positive and maximum at 0y , decreased to a 

negative and minimum value with y , and finally 

converged to zero for y  to satisfy the 

finiteness of the field described by equation (7). 
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Fig. 3: Distribution of stress zx  on the surface 

0x  
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Fig. 4: Distribution of stress yz  on the surface 

0x  

 

     Figures 5 and 6 show that the magnitudes of 

electric displacements xD  and yD  were maximum 

at the surface 0x , and decreased to zero with x . 

Figures 5 and 6 also show the important aspect 

mentioned with regard to Fig. 2 above because both 

figures elucidate experimentally-unmeasurable 

quantities. 

     At the same time, experimentally-measurable 

responses to disturbances need to be investigated 

from the viewpoint of nondestructive evaluation 

techniques. By regarding surface friction  zyf ,  in 

Fig. 1 as such a disturbance, the electric 

displacement xD  on the surface 0x  is one of the 

candidates for such a response. From this viewpoint, 

the distribution of electric displacement xD  on the 

surface 0x  is shown in Fig. 7, where the direction 

of the y -axis was taken as that in Fig. 4. By 

comparing Fig. 7 with Fig. 4, we found that the 

variations in electric displacement xD  with y  for 

various values of z  were roughly proportional to 

those of stress yz . This tendency was considered to 

be a consequence of the coupling behavior in yz , 

yz , xD , and xE  through the piezoelectric constant 

14e  in the fourth and first lines of equations (3) and 

(4), respectively, and suggested the possibility of a 

nondestructive evaluation technique using 

piezoelectric signals. Although the electroelastic 

response discussed in this paper occurred due to the 

disturbance defined in equation (25), responses for 

other disturbances can be easily investigated by 

updating  zyf ,  in equation (21). Furthermore, we 

expect that various configurations of the body, 

including bodies with defects such as notches, 

cracks, or inclusions, can be analyzed because the 

governing equations (12) for i  and i  are 

essentially the Laplace equations, which are 

mathematically well established. 
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Fig. 5: Distribution of electric displacement xD  

inside the body  0z  
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Fig. 6: Distribution of electric displacement yD  

inside the body  0z  
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Fig. 7: Distribution of electric displacement xD  on 

the surface 0x  

 

IV. Concluding remarks 
In this paper, we studied the electroelastic field 

in a semi-infinite body with D  symmetry subjected 

to surface friction. We theoretically formulated 

electroelastic field quantities by the potential 

function method and obtained the distributions of 

electroelastic field quantities inside the body by 

numerical calculations. These achievements, 

although their success depends on the characteristics 

of the model, have a great significance because they 
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enable us to accurately evaluate actual field 

quantities and to investigate experimentally-

unmeasurable quantities. 

     Moreover, we quantitatively investigated the 

surface electric displacement in response to an 

elastic stimulus of the surface friction and suggested 

the possibility of a nondestructive evaluation 

technique using piezoelectric signals. 
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